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Abstract:  

This article explores a specific case study that examines controllability and observability in 

general and in specific so that it is easy for the reader to understand these two concepts, which 

are fundamental in optimal control theory. Algorithms have been written to determine the 

controllability and observability of optimal control systems using the MATLAB programming 

language, and new techniques have been developed to deal with them. In addition, a critical test 

was created in which the state variables of the system or, more precisely, their corresponding 

states were split together, illustrating this with more than one example. Divided into four groups 

in a linear manner, as the article explains. To understand the controllability and observability 

of some more complex systems, this article is a starting point for the future expansion of these 

two concepts through the development of new algorithms or other applied solution methods or 

the creation of new algorithms. 
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الأمثل طرق خاصة لقابلية التحكم وقابلية الملاحظة في أنظمة التحكم   

* علي فرحان حاشوش
 

 * قسم الرياضيات، كلية التربية الأساسية ،جامعة ميسان، العراق 
ali_fr@uomisan.edu.iq  

 

 :الخلاصة

تستكشف هذه المقالة دراسة حالة محددة تدرس إمكانية التحكم وإمكانية الملاحظة على نطاق واسع ودقيق بحيث يسهل  

على القارئ فهم هذين المفهومين، وهما مفهومان أساسيان في نظرية التحكم الأمثل. تمت كتابة خوارزميات لتحديد إمكانية 

، كما تم تطوير تقنيات جديدة للتعامل معها.  MATLABثلى باستخدام لغة البرمجة  التحكم وقابلية الملاحظة لأنظمة التحكم الم

بالإضافة إلى ذلك، تم إنشاء اختبار نقدي تم فيه تقسيم متغيرات حالة النظام، أو بشكل أكثر دقة، الحالات المقابلة لها، مع  

المقال. من أجل فهم إمكانية التحكم وإمكانية توضيح ذلك بأكثر من مثال. مقسمة إلى أربع مجموعات بشكل خطي، كما يوضح  

الملاحظة في بعض الأنظمة الأكثر تعقيداً، تعد هذه المقالة نقطة انطلاق للتوسع المستقبلي لهذين المفهومين من خلال تطوير 

 خوارزميات جديدة أو طرق حل تطبيقية أخرى أو إنشاء خوارزميات جديدة.

 . رياضية، التحكم الامثل، قابلية التحكم، قابلية الملاحظةنماذج  :المفتاحيةالكلمات 

 

1. Introduction: 

Controllability and observability are two basic and important concepts in modern control 

theory. The stability of the control system and its types is also stable  )Routh stability criterion 

and Lyapunov) [1] [2]. In 1960, Kalman defined these two ideas in order [2] to determine the 

degree to which a system can be observed and managed [3]. The following fundamental queries 

must be addressed for any control system, especially for multivariable systems:  

a) Is it possible to find a control function 𝑢(𝑡) that will, in a finite amount of time, change 

the system's initial state (𝑥𝑡) into the desired final state (𝑥𝑓)? 

b) Is it possible to assess the system's state by analyzing its performance over a limited time? 

The terms controllability and observability refer to the two ideas at play. Accordingly, the 

system is controllable if the first question has a "yes" response. The system is also observable 

if the second question has a yes response. It is important to acknowledge the fundamental nature 

of these problems. For instance, it makes no sense to attempt controlling a system by feedback 

of a state variable that permits the system's poles to be positioned arbitrarily unless the system 

is controllable. Similarly, attempting to reconstruct unmeasurable state variables of the system 

using so-called observers is futile unless the system is observable. In reality, controllability and 
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observability are two dual concepts that are intimately associated with the cancellation of zeros 

and poles in the transfer function of the system [5]. 

2. Controllability  

We say about a system that it is controllable if and only if it is possible through the control 

vector to bring the system from the initial state  𝑥(𝑡0) = 𝑥0o any final state 𝑥(𝑡𝑓) = 𝑥𝑓 within 

a specified time 𝑡 > 0. 

 In the case of nonlinear systems, these equations take the following form: 

𝑥̇ = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) 

𝑦 = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡) 

In the case of linear systems fixed with time, the equations take the following form: 

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

Where  

𝐴 is the state matrix of order  𝑛 × 𝑛, 𝐵 is cthe ontrol matrix of order  𝑛 × 𝑚,  𝐶 is the output 

matrix of order 1 ×  𝑛, 𝐷 is Direct transfer matrix of order 1 × 𝑚, 𝑛  the number of state vector 

state.,𝑚 the number of control vector states [4]. We consider a system described by the state 

equations: 

                                         𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)    (𝟐. 𝟏) 

𝑦 = 𝐶𝑥(𝑡)   

With the transformation: 

                                       𝑥(𝑡) = 𝑝𝑧(𝑡)     (𝟐. 𝟐) 

we can transform equation (𝟐. 𝟏) into the form: 

                    𝑧̇ = 𝐴1𝑧(𝑡) + 𝐵1𝑢(𝑡)       (𝟐. 𝟑) 

                   𝑦 = 𝐶1𝑧(𝑡)        

Where 𝐴1 = 𝑃−1𝐴𝑃 , 𝐵1 = 𝑃−1𝐵 and 𝐶1 = 𝐶𝑃. Assuming that 𝐴 has distinct 

eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛we can choose 𝑃 so that 𝐴1 is a diagonal matrix, that is, 

𝐴1 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑛} 

If 𝑛 = 𝑚 = 2, the first of the equations (𝟐. 𝟑) has the form  
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[
𝑧̇1

𝑧̇2
] = [

𝜆1 0
0 𝜆2

] [
𝑧1

𝑧2
] + [

𝑏11 𝑏12

𝑏21 𝑏22
] [

𝑢1

𝑢2
] 

Which is written as  

𝑧̇1 = 𝜆1𝑧1 + 𝑏1
𝑇𝑢        (𝟐. 𝟒) 

  𝑧̇2 = 𝜆2𝑧2 + 𝑏1
𝑇𝑢        

Where 𝑏1
𝑇 and 𝑏2

𝑇 are the row vectors of the matrix 𝐵1 

The output equation is 

[
y1

y2
] = [

𝑐11 𝑐12

𝑐21 𝑐22
] [

𝑧1

𝑧2
] 

Which can be written as  

𝑦1 = 𝑐11𝑧1 + 𝑐12𝑧2  

𝑦2 = 𝑐21𝑧1 + 𝑐22𝑧2  

Or  

[
𝑦1

𝑦2
] = [

𝑐11

𝑐21
] 𝑧1 + [

𝑐12

𝑐22
] 𝑧2 

So that  

𝑦 = 𝑐1𝑧1 + 𝑐2𝑧2      (𝟐. 𝟓) 

where 𝑐1 and 𝑐2 are the column vectors of 𝐶1. So, in general, equation (2.3) can be written 

in the form: 

𝑧̇𝑖 = 𝜆𝑖𝑧𝑖 + 𝑏𝑖
𝑇𝑢(𝑡)      (𝑖 = 1,2,3, … , 𝑛) 

𝑦 = ∑ 𝑐𝑖𝑧𝑖
𝑛
𝑖=1        (𝟐. 𝟔) 

It is seen from equation (𝟐. 𝟔)  that if 𝑏𝑖
𝑇the 𝑖𝑡ℎ h row of 𝐵1 has all zero 

components, then 

𝑧̇𝑖 = 𝜆𝑖𝑧𝑖 + 0 

And the input 𝑢(𝑡) has no influence on the 𝑖𝑡ℎ mode of the system. The mode is said to be 

uncontrollable, and a system having one or more such modes is uncontrollable [6][7]. 

Example 1: Check whether the system having the state-space representation 

𝑥̇ = [
−1 2
−3 4

] [
𝑥1

𝑥2
] + [

4
6
] 𝑢 

𝑦 = [1 −2] [
𝑥1

𝑥2
] 

Is controllable? 

Solution: The characteristic equation is 

|𝜆𝐼 − 𝐴| = 𝜆2 − 3𝜆 + 2 = 0  

(𝜆 − 1)(𝜆 − 2) = 0  

     ⟹ 𝜆 = 1 & 𝜆 = 2 
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 The corresponding eigenvectors are 

𝑥1 = [1 1]𝑇 𝑎𝑛𝑑 𝑥2 = [2 3]𝑇  

so that the modal matrix is 

𝑃 = [
1 2
1 3

]    𝑎𝑛𝑑 𝑃−1 = [
3 −2

−1 1
]  

Using the transformation 𝑥 = 𝑃𝑧, the state-equation becomes 

𝑧̇ = [
1 0
0 2

] 𝑧 + [
0
2
] 𝑢 

𝑦 = [−1 −4]𝑧 

This equation shows that the first mode is uncontrollable and so the system is uncontrollable. 

On the basis of the above result, we now derive an extremely useful criterion for determining 

whether a system is controllable. Although at this stage we consider only the necessity of this 

criterion, it is also a sufficient condition. To simplify the notation and the mathematical 

manipulations, we consider a SISO (single-input and single-output) system, so that in equation 

(2.1) B is a one-column matrix, that is a column vector b (say), and C is a row vector𝑐1́. The 

result holds for the more general case when the system is multivariable. 

Equations (2.1) and (2.3) are then written as 

𝑥̇ = 𝐴𝑥(𝑡) + 𝑏𝑢(𝑡)     (𝟐. 𝟏. 𝒂) 

𝑦 = 𝐶𝑥(𝑡)         

And 

𝑧̇ = 𝐴1𝑧(𝑡) + 𝑏1𝑢(𝑡)     (𝟐. 𝟑. 𝒂) 

𝑦 = 𝑐1́𝑧(𝑡)        

We have chosen an indirect way of deriving the controllability criterion. It has the advantage 

of simplicity, but a penalty we paid or this is some loss in the logic behind the setting up of the 

criterion. We have established that the necessary condition for the system defined by equation 

(2.1. a) to be controllable is that the components of the vector 

𝑏1 = [𝛽1 𝛽2 … 𝛽𝑛]𝑇 in equation (𝟐. 𝟑. 𝒂)are all non-zero 

In equation (2.3. a) the matrix 𝐴1 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2. … , 𝜆𝑛}where the eigenvalues 

𝜆1, 𝜆2. … , 𝜆𝑛 are assumed distinct. Hence the matrix: 

[
 
 
 
1 𝜆1 … 𝜆1

𝑛−1

1 𝜆2 … 𝜆2
𝑛−1

⋮  ⋮ ⋮    ⋮      
1 𝜆𝑛 … 𝜆𝑛

𝑛−1]
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Has linearly independent columns, so that it is non-singular. It follows that the necessary 

condition to be controllable is that the (partitioned) matrix: 

𝑄𝑝 = [𝑏1 𝐴1𝑏1 𝐴1
2𝑏1 ⋯ 𝐴1

𝑛−1𝑏1] =

[
 
 
 
𝛽1 𝜆1𝛽1 … 𝜆1

𝑛−1𝛽1

𝛽2 𝜆2𝛽2 … 𝜆2
𝑛−1𝛽2

⋮      ⋮     ⋮       ⋮      
𝛽𝑛 𝜆𝑛𝛽𝑛 … 𝜆𝑛

𝑛−1𝛽𝑛]
 
 
 
  (𝟐. 𝟕) 

The matrix 𝑄𝑝is non-singular.  

Since 

𝐴1 = 𝑃−1𝐴𝑃 𝑎𝑛𝑑 𝑏1 = 𝑃−1𝑏 

We have  

𝐴1𝑏1 = 𝑃−1𝐴𝑃 𝑃−1𝑏 = 𝑃−1𝐴𝑏 

𝐴1
2𝑏1 = 𝑃−1𝐴2𝑃 𝑃−1𝑏 = 𝑃−1𝐴2𝑏 

⋮ 

𝐴1
𝑛−1𝑏1 = 𝑃−1𝐴𝑛−1𝑃 𝑃−1𝑏 = 𝑃−1𝐴𝑛−1𝑏 

So that 

𝑄𝑝 = 𝑃−1[𝑏 𝐴𝑏 𝐴2𝐵 ⋯ 𝐴𝑛−1𝑏] = 𝑃−1𝑄𝑐 

Where  

𝑄𝑐 = [𝑏 𝐴𝑏 𝐴2𝐵 ⋯ 𝐴𝑛−1𝑏]    (𝟐. 𝟖) 

Since 𝑄𝑝(for a controllable system) and 𝑃−1 are both non-singular, 𝑄𝑐 (for a controllable 

system) is also non-singular. 

As 𝑄𝑝 is non-singular, its 𝑛 columns are linearly independent. So that the rank of the matrix 𝑄𝑐 

written as 𝑟(𝑄𝑐) is 𝑛. 

2.1. Controllability Test 

To find out the controllability of a system, consider a system described by the state 

equations: 

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦 = 𝐶𝑥(𝑡) 

Step 1: write the matrix 𝑄𝑐( 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥) 

𝑄𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵] 

Step 2: find the determinant of 𝑄𝑐 if it is not equal to zero then the control system is 

controllable or if the determinant of 𝑄𝑐 equal to zero then the control system is uncontrollable. 

If the matrix 𝐴 in system order is higher than 3 × 3, it is difficult to know whether the system 

is controllable or not in a previous way, so we assume that  
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Φ = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−𝑚𝐵] 

When 𝑚 is number of inputs   

Step 1: write the matrix 𝑄𝑐( 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥) 

Φ = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−𝑚𝐵] 

Step 2: find rank of Φ if it is equal to 𝑛 then the control system is controllable or if rank of 

Φ not equal to 𝑛 then the control system is uncontrollable. 

Or we can calculate the determinant  ΦΦ𝑇 if it is not equal to zero then the control system 

is controllable or if determinant of ΦΦ𝑇 equal to zero then the control system is uncontrollable. 

Example 2: Verify the controllability of control system which is the presented by state 

equation: 

𝑥̇ = [

0 1 0 0
3 0 0 2
0
0

0
−2

0
0

1
0

] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

0 0
1 0
0 0
0 1

] 𝑢 

Solution:  

Step 1: Φ = [

0 1 0 0
3 0 0 2
0
0

0
−2

0
0

1
0

    

0 2
−1 0
−2
0

0
−4

]   

Step 2: 𝑟𝑎𝑛𝑘(Φ) = 4 = n 

Then the system is controllable. 

2.2. Program for finding controllability 

A program was developed in MATLAB to create controllability, and it was saved under the 

name “ctrb” and can be used when needed . 

The program: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜 = 𝑐𝑡𝑟𝑏(𝐴, 𝐵) 

𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴); 

𝑐𝑜 = 𝑐𝑡𝑟𝑏(𝑎, 𝑏); 

𝑖𝑓 𝑟𝑎𝑛𝑘(𝑐𝑜) ≅ 𝑛 

𝑑𝑖𝑠𝑝(′𝑛𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑏𝑙𝑒′) 

𝑒𝑙𝑠𝑒 

𝑑𝑖𝑠𝑝(′ 𝑐𝑜𝑛𝑡𝑟𝑎𝑏𝑙𝑒′) 

𝑒𝑛𝑑 
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Example 3: Is the system given as follows controllable? 

[
𝑥̇1

𝑥̇2

𝑥3

] = [
−1 0 0
−1 −2 0
1 0 0

] [

𝑥1

𝑥2

𝑥3

] + [
1
0
0
] 𝑢 

𝑦(𝑡) = [1 1 0] [

𝑥1

𝑥2

𝑥3

] 

Solution: Using the preceding method results in the following 

≫ 𝐴 = [−1 0 0;−1 −2 0; 1 0 0]; 

≫ 𝐵 = [1; 0; 0]; 

≫ 𝑐𝑜(𝐴, 𝐵) 

𝑐𝑜𝑛𝑡𝑎𝑏𝑙𝑒 

𝑎𝑛𝑠 = 

1 −1 1
0 −1 3
0 1 −1

 

That is, the system is controllable and the value of the matrix 𝑄𝑐: 

𝑄𝑐 = [
1 −1 1
0 −1 3
0 1 −1

] 

3. Observability  

A system is said to be observable if the initial vector 𝑥(𝑡) can be found from the 

measurement of 𝑢(𝑡) and 𝑦(𝑡). The plant described by (2.1) is completely state observable if 

the inverse matrix exists [8].  

By using the transform 𝑥 =  𝑃𝑧(𝑥) as in the (2.1) section, we end up with the system state 

equations in the form of equation (6.3), that is 

𝑧̇ = 𝐴1𝑧(𝑡) + 𝐵1𝑢(𝑡) 

  𝑦 = 𝐶1𝑧(𝑡)    

If a row of the matrix 𝐶1 is zero, the corresponding mode of the system will not appear in the 

output 𝑦. In this case the system is unobservable, since we cannot determine the state variable 

corresponding to the row of zeros in 𝐶1from y. 
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Example 4: Check whether the system having the state-space representation 

𝑥̇ = [
−5 4
−6 5

] [
𝑥1

𝑥2
] + [

1
2
] 𝑢 

𝑦 = [3 −2] [
𝑥1

𝑥2
] 

Is observable? 

Solution: The characteristic equation is 

|𝜆𝐼 − 𝐴| = 𝜆2 − 1 = 0  

(𝜆 − 1)(𝜆 + 1) = 0  

     ⟹ 𝜆 = 1 & 𝜆 = −1 

 The corresponding eigenvectors are 

𝑥1 = [1 1]𝑇 𝑎𝑛𝑑 𝑥2 = [2 3]𝑇  

so that the modal matrix is 

𝑃 = [
1 2
1 3

]    𝑎𝑛𝑑 𝑃−1 = [
3 −2

−1 1
]  

Using the transformation 𝑥 = 𝑃𝑧, the state-equation becomes 

𝑧̇ = [
−1 0
0 1

] [
𝑧1

𝑧2
] + [

−1
1

] 𝑢 

𝑦 = [1 0] [
𝑧1

𝑧2
] 

Then the system is unobservable. 

Example 5: illustrates the importance of the observability concept. In this case, we have an 

unstable system, whose instability is not observed in the output measurement. The dual 

controllability concept is of equal theoretical importance. An uncontrollable system has one or 

more modes that are not influenced by the input. 

We now similarly derive a criterion for observability to that used to derive the controllability 

criterion. 

Again, for simplicity, we consider a 𝑆𝐼𝑆𝑂 system, but the result holds for the 

more general multivariable system. It can be seen that the necessary conditions for systems 

defined by equation (1.a) to be observable is that the components of the vector𝑏1 =

[𝛾1 𝛾2
… 𝛾𝑛]𝑇 in equation (𝟑. 𝒂) are all non-zero 

for a controllable system we have the matrix  

𝑄1 =

[
 
 
 

𝑐1
𝑇

𝑐1
𝑇𝐴1

⋮
𝑐1

𝑇𝐴1
𝑛−1]

 
 
 
= [

𝛾1       𝛾2     …       𝛾𝑛

𝛾2𝜆1 𝛾2𝜆2     …   𝛾𝑛𝜆𝑛

⋮       ⋮            ⋮         ⋮
𝛾𝑛𝜆1

𝑛−1 𝛾2𝜆2
𝑛−1 … 𝛾𝑛𝜆𝑛

𝑛−1

]  (𝟑. 𝟏) 

The matrix 𝑄1is non-singular.  
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Since 

𝐴1 = 𝑃−1𝐴𝑃 𝑎𝑛𝑑 𝐶1
𝑡 = 𝑐𝑇𝑃 

We have  

𝑐1
𝑇𝐴1 = 𝑐𝑇𝑃𝑃−1𝐴𝑃 = 𝑐𝑇𝐴𝑃 

𝐴1
2𝑏1 = 𝑐𝑇𝑃𝑃−1𝐴2𝑃 = 𝑐𝑇𝐴2𝑃 

⋮ 

𝐴1
𝑛−1𝑏1 = 𝑐𝑇𝑃𝑃−1𝐴𝑛−1𝑃 = 𝑐𝑇𝐴𝑛−1𝑃 

So that 

𝑄1 = [

𝑐𝑇

𝑐𝑇𝐴1

⋮
𝑐𝑇𝐴1

𝑛−1

] 𝑃 = 𝑄𝑜𝑃 

Where  

            𝑄𝑜 = [

𝑐𝑇

𝑐𝑇𝐴1

⋮
𝑐𝑇𝐴1

𝑛−1

]    (𝟑. 𝟐) 

Since 𝑄𝑜(for an observable system) and 𝑃 are both non-singular, 𝑄𝑜 (for a observable 

system) is also non-singular. 

3.1. The observability criterion 

In equation (𝟑. 𝟏) if the rank of matrix 𝑄𝑜 is 𝑛, the system can be called observable system. 

If rank 𝑄𝑜 less than 𝑛 ,the system is un observable. 

3.2. Observability test 

A control system is said to be observable if it is able to determine the initial states of the 

control system by observing the outputs in finite duration of time. 

To find out whether the control system is observable or not, we use a Kalman’s test: 

 Step 1: form the matrix 𝑄𝑜 = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴𝑇)2𝐶𝑇 … (𝐴𝑇)𝑛−1𝐶𝑇] 

Step 2: Take determinant of 𝑄𝑜 if it is not equal to zero then the control system is observable 

or if determinant of 𝑄𝑐 equal to zero then the control system is not observable [9]. 

Example 5: Verify the observability of control system which is the presented by state equation: 

𝑥̇ = [
−2 −2
1 0

] [
𝑥1

𝑥2
] + [

1
1
] 𝑢 

𝑦 = [1 1] [
𝑥1

𝑥2
]    

Solution:  Given 𝐴 = [
−2 −2
1 0

] , 𝐵 = [
1
1
]    𝑎𝑛𝑑 𝑐 = [1 1]   , 𝑛 = 2 
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Step 1: 𝑄𝑜 = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴𝑇)2𝐶𝑇 … (𝐴𝑇)𝑛−1𝐶𝑇] = [𝐶𝑇 𝐴𝑇𝐶𝑇] = [
1
1

−1
−2

] 

Step 2:|𝑄𝑜| = |
1
1

−1
−2

| = −1 

the system is observable. 

3.3. Program for finding observability  

MATLAB program was designed to find observability and was saved under the name  “obsv” 

It is used when needed, as shown below [10]: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑏 =  𝑜𝑏𝑠𝑣(𝐴, 𝐶) 

%′𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑏 = 𝑜𝑏𝑠𝑣(𝐴, 𝐶)𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 ′ 

%′ 𝑜𝑏 =  [𝐶;  𝐶𝐴;  𝐶𝐴^2; . . . 𝐶𝐴^(𝑛 − 1)]. 𝑇ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑠𝑡𝑎𝑡𝑒′ 

%′ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑜 ℎ𝑎𝑠 𝑎 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑛. 

𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴); 

𝑓𝑜𝑟 𝑖 = 1: 𝑛; 

𝑜(𝑛 + 1 − 𝑖, : )  =  𝐶 ∗ 𝐴^(𝑛 − 𝑖); 

𝑒𝑛𝑑 

𝑖𝑓 𝑟𝑎𝑛𝑘(𝑜𝑏)~ = 𝑛 

𝑑𝑖𝑠𝑝(′𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒′) 

𝑒𝑙𝑠𝑒 

𝑑𝑖𝑠𝑝(′𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒′) 

𝑒𝑛𝑑 

Example 6: Is the system given as follows: 

[
𝑥̇1

𝑥̇2

𝑥3

] = [
0 1 0
0 0 1

−6 −11 −6
] [

𝑥1

𝑥2

𝑥3

] + [
1
1
1
] 𝑢 

𝑦(𝑡) = [1 1 1] [

𝑥1

𝑥2

𝑥3

] 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒? 

Solution:  

>>  𝐴 = [0 1 0; 0 0 1; −6 − 11 − 6]; 

>>  𝐶 = [1 1 1]; 

>>  𝑜𝑏(𝑎, 𝑐) 
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𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 

𝑎𝑛𝑠 = 

1 1 1
−6 −10 −5
30 49 20

 

That is, the system is 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 and the value of the matrix 𝑄𝑜: 

𝑄𝑜 = [
1 1 1

−6 −10 −5
30 49 20

] 

4. Decomposition of System State 

From the discussion in the previous two sections, it is clear that the state variables 

(equivalently, the corresponding modes) of a linear system can generally be divided into the 

following four exclusive groups: 

Case 1: Controllable and Observable 

Case 2: Controllable but unobservable 

Case 3: Uncontrollable but observable 

case 4: Uncontrollable and unobservable. 

Assuming that the system matrix 𝐴 has different eigenvalues, the state equation can be 

simplified to the following form by appropriate transformation: 

[

ẋ1

ẋ2

ẋ3

ẋ4

] = [

𝐴1 0
0
0
0

𝐴2

0
0

0 0
0
𝐴3

0

0
0
𝐴4

] [

𝑥1

𝑥2

𝑥3

𝑥4

] + [

𝐵1

𝐵2

0
0

] 𝑢    (𝟒. 𝟏) 

𝑦 = [𝐶1 0 𝐶3 0] [

𝑥1

𝑥2

𝑥3

𝑥4

]      

The (transformed) system matrix 𝐴 is put in "block diagonal" form, with each 𝐴𝑖(𝑖 =

1,2,3,4) having a diagonal form. The suffix 𝑖 of the state variable vector x means that the 

elements of this vector are the state variables corresponding to the 𝑖𝑡ℎ case defined above. 

Example 7: Classify the state variables in a system defined by the following state equation: 

[
 
 
 
 
 
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6]
 
 
 
 
 

=

[
 
 
 
 
 
−2 0
0
0
0
0
0

−1
0
0
0
0

0 0 0 0
0
1
0
0
0

0 0 0
0 0 0

−3 0 0   
0 0 0

0 0 −4 ]
 
 
 
 
 

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝑥6]
 
 
 
 
 

+

[
 
 
 
 
 
1 −1
0 0
1 1
0 0
1 0
0 2 ]

 
 
 
 
 

𝑢  
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[
𝑦1

𝑦2
] = [

0 0 −1
1 0 1

2 0 1
−1 0 1

]

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝑥6]
 
 
 
 
 

     

Solution: By inspection we can classify the state variables into the four groups as follows: 

Case1: Controllable and observable, 𝑥1, 𝑥3 𝑎𝑛𝑑 𝑥6. 

Case 2: Controllable and unobservable 𝑥5. 

Case 3: Uncontrollable and observable 𝑥4. 

Case 4: Uncontrollable and unobservable 𝑥2. 

We can represent the decompositions of the state variables into four groups 

by a diagram (see Figure1) showing the system divided into four subsystems each 

having state variables belong to one group only as indicated by the suffix 𝑖 of 

𝑆𝑖. 

 

Figure 1: The system divided into four subsystems 

This insight into the system structure explains the difference that may exist between the form 

of the system transfer function calculated from the system differential equations and that 

obtained by experimentation (that is, by obtaining the system frequency response. 

We define the transfer function ( 𝐺(𝑠) as 𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 ) as the ratio of the Laplace transform 

of the output 𝑌(𝑠) to the input 𝑈(𝑠). The transfer function obtained from the differential 

equation (or equivalently from the system equation of state) includes all state variables (or 

modes) of the system. But the transfer function discovered through experimentation involves 

the part of the system that is affected by the input and affects the output. It can be seen from 

Figure 𝟏 that the transfer function of the subsystem Si is determined and only includes 

controllable and observable state variables (or modes). 
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In general, the transfer function 𝐺(𝑠) represents only the subsystem 𝑠1 of the considered 

system, and indeed on adding to 𝑠1 the subsystems  𝑆2 , 𝑆3 and 𝑆4 has no effect on 𝐺(𝑠). 

Example 8: Make sense of the above discussion by using the systems that are examined in 

example 1 and Decomposition of System State.  

Solution: In example 1, the state equations were transformed into the diagonal form 

𝑧̇ = [
1 0
0 2

] 𝑧 + [
0
2
] 𝑢 

𝑦 = [−1 −4]𝑧. 

There are two modes in the system, which correspond to the poles 𝜆 =  1 and λ = 2. Figure 

2 can be used to represent the equations . 

 

 

 

 

 

Figure 2: The representation of the equations in example 1 

In Example 1 the transformed state equations are: 

𝑧̇ = [
−1 0
0 1

] [
𝑧1

𝑧
] + [

−1
1

] 𝑢 

𝑦 = [1 0] [
𝑧1

𝑧
] 

Figure 3 can be used to represent these equations.  

 

 

 

 

 

 

Figure 3: The representation of the equations 

−4 −1 𝑧̇2 = 2𝑧2 + 2𝑢 𝑧̇1 = 𝑧1 

 
 

𝑢 

𝑦 

𝑧̇2 = 𝑧2 + 𝑢 

 

𝑧̇1 = 𝑧1 − 𝑢 

 

𝑦 

𝑢 
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In this case  

𝐺(𝑠) = [1 0] [

1

𝑠 + 1
0

0
1

𝑠 − 1

] [
−1
1

] = −
1

𝑠 + 1
 

Once more, it is evident that the transfer function does not include the unobservable mode, 

which corresponds to the pole 𝜆 =  1 . 

It was mentioned in the example above that the unpredictable or the transfer function of a 

system lacks the unobservable mode. This fact warrants more investigation because it raises 

another requirement for a system to meet in order to be considered observable and or 

controllable [11]. It is believed that matrix A is of order n X n, with distinct eigenvalues  . 

5. Conclusion 

This article discusses new methods of controllability and observability in control systems 

and the creation of algorithms using the MATLAB language in order to facilitate knowledge of 

controllability and observability in control systems, and the creation of applied methods as well. 

There are many well-known pieces of evidenceand methods that were not presented in this 

article. However, much of the proof is known, there is no doubt that there is much more 

undiscovered and that it is worth discussing, sharing, and presenting. Future research may 

address other things in depth. 
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