The use of binary digit mapping on ASCII characters to create a high-capacity, undetectable text steganography.

Eng. Saad Nasser Al Azzam
Dr. Fahad Garni
College of Computing - Department of Cyber Security - University of Bisha
Kingdom Saudi Arabia
Snazzam.199@gmail.com

Keywords: Artificial Intelligent, Smart home, GSM Network

ABSTRACT

Plain text is commonly utilized for online news and social media transmission due to its lightweight and cross-platform nature. Unfortunately, it may easily be exploited by attackers (For instance, in cases when the language is altered for specific goals, illegal access to the material or its abuse is possible.) To solve this problem, we embed secret texts (ST) within seemingly innocuous cover texts (CT) so that we can track CT for modifications. Based on the findings of this study, a method is provided for ST embedding in CT in which binary ST digits are converted to CT binary digits through Characters in ASCII (containing whitespace, punctuation, and special characters). Before commencing the embedding procedure, Using a One-Time Pad (OTP), the ST text was translated into cipher text, and the value of each character was changed into a binary integer with a length of seven bits. As opposed to the ST text, which required additional time to encode, the CT text could be converted into a binary integer using just the first seven bits. During the embedding process, It was decided to swap the first bit of the ST character for the first bit of the CT character, which both had the same amount of bits (putting the first bit of the ST character, for example, on the same line as the first bit of the CT character). Any piece of ST that was recorded on any bit of CT served as a stage key. Extracting ST from CT requires the stage key. The embedded information served effectively as text steganography or watermark, and the CT's appearance was unaffected by the embedding procedure. In other words, the 1 character of ST might be concealed by using 7 CT characters. Also, a Jaro-Winkler Distance of 1 meant that the stage texts made couldn't be told apart from CT by looking at them.

©2022 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

Citation : Al.Azzam , S.N., & Al-Garni, F.A.. (2023). The use of binary digit mapping on ASCII characters to create a high-capacity, undetectable text steganography. Journal of Advanced Sciences and Engineering Technologies, 5(2), 49-57. https://doi.org/10.32441/jaset05.02.05
Introduction

Online news, social media, and other online sources are becoming increasingly available to a growing number of people all over the world. This is especially true for those who have access to a computer. Smartphones or other devices. Most of the data found in these virtual communities is stored in an easily-modified plain-text format. Because the original was changed without good reason, the result is false information or a hoax. Steganography, also known as the watermark technique, is used to safeguard information by concealing secret content behind a seemingly innocuous cover text. This is essential since it is very challenging to maintain the information's validity and integrity when it is presented in plain text. This study suggests a technique for embedding a hidden message in ordinary ASCII text by mapping the binary value of the letters. Using this strategy, the plain text that has the secret text inserted into it will always seem very similar to the plain text that does not include the secret information. This is a guarantee. If an unauthorized user attempts to change the plain text, either by deleting or adding characters, this will be instantly visible. As a result, the plain text containing the secret material may be believed to be genuine and original. This method may be used to any plain-text digital information, such as online news, e-commerce, social networking, and so on. It's useful for SMS, too (SMS). Information concealment, watermarking, and steganography are the three most common uses for data embedding. Despite their apparent conceptual and technological closeness, these three topics have significant differences [1, 2, 3, and 4].

Watermarks are used to hide information in media where the emphasis is on the watermark, whereas steganography is used to hide secret information in media when the attention is on the material itself as the primary focus of the medium. Thus, steganography is successful only if the intended recipient never discovers the concealed information [5, 6, and 7]. The term "steganography," which refers to the practice of concealing written information, dates back to antiquity. A slave called according to Herodotus [8, 9]. Was the first person to utilize steganography His master had hidden instructions in a tattoo on his skull. The slave was sent to the Miletus, the capital of the Ionians, as soon as his hair started to grow again so that he could report to King Aristagoras. This secret message was then revealed by shaving the head of the slave. The modern practice of steganography involves concealing a message inside another file, which may take the shape of text, photos, audio, video, or any other type of digital information [10,11,12]. The term "stage file" refers to the file that contains the data that has been embedded, "stage key" refers to the key that was used to encode the process of hiding the data, and "embedded data" refers to the data that has been hidden. Text steganography refers to the practice of utilizing text to obfuscate sensitive information. It uses a number of techniques (such as changing the text's structure or vocabulary or rearranging the random letters or using context-free grammar) to generate comprehensible writing [13,14,15].

Robust and fragile steganography are defined by their respective strengths and weaknesses. The goal of robust steganography is to stop anyone from finding the hidden data inside the file, while the goal of fragile steganography is to stop anyone from changing the stego file in any way [13,14,15].
This study is made up of several parts: an introduction, a discussion of relevant literature and theories, a description of the method to be used, the results and discussion, and finally a summary and conclusion.

2. Related Works and Theories
Using text steganography as an example, we’ll go through the reasoning behind our suggested technique of data embedding.

A. Hiding Data in Wordlist
Using dynamic CT, which is explained in detail in the method that is referred to as "Hiding Data in Wordlist," it is possible to hide ST inside a word list. Calculating the decimal value of each secret character results in the production of the first character, which is then encoded in the first letter and a word of a preset length. This first character is acquired by calculating the decimal value of each secret character. [16].

B. Using Paragraphs to Hiding Secret Text
To conceal ST, paragraphs of English text are used as CT in text steganography [17]. It generates a stego key that may be used to encode and decode hidden data. In appearance, the stego key generated is identical to CT. The approach creates a bit stream by using the binary representations of ASCII characters. This bit stream is then used in conjunction with a One Time Pad in order to encrypt the secret text that is inserted (OTP). The chipped text is painstakingly reassembled into the CT words in the correct order. Depending on the term, either the first or final letter of the word is modified by inserting a bit of 0 or 1. But it doesn't work for words whose first and last letters are the same. Based on prior studies' findings, in order to conceal information, the approach of "Hiding Data in Paragraphs" was developed [8]. Using the binary value of letters and the value of the XOR between the first and final words of a line in a CT paragraph, this technique hides data. The Hiding a Bit of ST in Each Character in the Phrases of a CT approach was developed as a result of other studies [10], and it involves disguising little amounts of ST inside the letters that make up the words of a CT. Selecting a certain CT character is used to mask each individual bit.

C. One Time Pad Encryption
To encrypt and decrypt data, One-Time Pad (OTP) employs a single key for both operations. OTP encryption is a popular cryptographic method. OTP is very difficult to break [11] because each key can only be used once and there are as many keys as there are encoded messages. Since the key sequences don’t follow any kind of statistical pattern, the attacker will have to try everything before they succeed. The notation used by the OTP algorithm, which employs XOR or modulo (mod), looks like this [18].

\[C_i = (P_i + K_i) \mod z \]

(1)

If Ci is the ciphertext, Pi denotes the plaintext, Ki denotes the key, and z denotes the total amount of characters that may be used.

D. Plain Text
Unlike other forms of text, plain text does not specify details like font family, size, or color or layout. In the absence of agreement, it is often used in inter-computer networks for the
transmission of format information and text layout [13]. As a rule, 7 or 8 bits are sufficient to store ASCII text in its most basic form. For example, TextEdit (Mac OS), SimpleText (Mac OS), Gedit (Unix, GNU/Linux), nano (Unix, GNU/Linux), Notepad (Windows), and ed (DOS) (Mac OS X). One may distinguish between two forms of "plain text" by looking at whether or not they have spaces. In the field of cryptography, the phrase "plaintext" refers to both the original text before encryption and the resulting encrypted text.

E. Jaro-Winkler Distance

Jaro-Winkler An method called "distance" is used to calculate how similar two strings are to one another. This method compares the two strings for similarities in order to find instances of repetition. A score of 0 indicates that no similarities were found between the strings, whereas a score of 1 indicates that they are the same. The three basic parts of this method are measuring the length of the string, finding strings of the same length, and enumerating the potential swaps [19]. To illustrate how [20] determines the separation (dj) between two strings (s1 and s2), consider the following:

$$d_j = \frac{1}{3} \times \left(\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m - l}{m} \right)$$

(2)

Cover text is of length s1, stego text is of length s2, and the number of transpositions is t, where m is the total number of characters and s1 and s2 are the lengths of the respective text strings. In order to determine whether s1 and s2 are a match, check to see if their contents are same.

$$d_{cw} = d_j + (l p(1 - d_j))$$

(3)

With the following formula, you can find the Jaro-Winkler distance (dw) between two strings and get a good idea of how similar they are.

$$d_{cw} = d_j + (l p(1 - d_j))$$

(4)

The Jaro-prefix Winkler’s scale (p) is given a value of 0.1, and the prefix length (l) is equal to the same length as the character of the string being compared. This allows for a maximum inequality of 4 characters to be achieved, where s1 and s2 are the strings that are being compared to determine whether or not they are equal. The Jaro-prefix Winkler’s scale is implemented with a value of 0.1 and a prefix length (l) that corresponds to the same number of characters as the string that is being evaluated for similarity [21,22].

3- Proposed Method: Bit Mapping on Ascii Characters

The binary digit (bit) of each secret text (ST) character is translated onto the binary digit (bit) of each cover text (CT) character, according to a technique that has been presented here. This allows the secret text (ST) to be concealed inside the cover text (CT) (CT). Within the context of this bit mapping, a binary digit stands in for every whitespace, punctuation mark, and symbol that is found in CT [21,22].

A. Bit Mapping

When using the bit mapping technique of text steganography, the binary (bit) digit value is mapped onto each ASCII letter to generate a sequence number that may be used as a stego key. This approach is also known as the byte mapping method. In 7 bits, each character is represented by one of two values: either a ST or a CT value. The value in binary representation of the letter Z, for instance, is 1011010, which may be represented as ST, while the binary values of the letters ABCDEFG can be used as CT (1000001, 1000010, 1000011, 1000100, 1000101, 1000110, and 1000111). So, the sequence number is used as a steganography key, and the binary values of each ST character are encoded onto one of the identical binary values contained inside each CT character, reading from left to right. The complex process of mapping is seen in FIGURE 2 below.

![Figure 2 Bit mapping](image-url)
B. Method

The following is a description of the bit mapping technique of text steganography: If we have an alphabet, $A = \{A, B, C, \ldots, Y, Z\}$, a set of integers, \mathbb{Z}_26, a collection of secret texts, $M = a_1, a_2, \ldots, a_m$ with $a_i \in A$, and a set of one-time password keys, $K_i = k_1, k_2, \ldots, k_m$ with $k_i \in \mathbb{A}$, then the function of $\text{Asc}(x)$ is the function that converts xA into the final seven digits of the ASCII code [24,25]. You may decrypt message E by:

$$E = f^{-1} ([f(M) + f(K)] \mod 26) \quad (5)$$

Following this, we may derive the binary representation E_b by:

$$E_b = \text{Asc}(e), \forall e \in E \quad (6)$$

with $|E_b| = 7m$. For example, cover-text used $C = c_1, c_2, \ldots, c_n$ where n is greater than or equal to $7m$. One may convert C into its binary version by doing:

$$C_b = \text{Asc}(c), \forall c \in C \quad (7)$$

Following these criteria, the binary digits E_b are embedded inside the binary digits C_b. Reading E_b proceeds from left to right, whereas reading C_b begins with the initial character (the first seven numbers) and proceeds counterclockwise. For instance, if $i = 1, 2, 7m$ and $j = 1, 2, 7n$, then e_iE_b and c_jC_b, respectively.

The stego key is then derived via an embedding procedure $W = w_1, w_2, \ldots, w_7n$ with rules $w_k = j$ if $e_i = c_j$, yielding a stego-text S that is visually indistinguishable from the cover text.

If a message receiver, M, receives a stego message (S) together with a stego key (W) and a one-time password (OTP) key (K), M may decipher M using the following steps. First, we use it to transform the steganography text S into the binary representation S_b.

$$S_b = \text{Asc}(s), \forall s \in S \quad (8)$$

Coded Document By employing stego key W, we can decrypt S_b and get E_b. To demonstrate, we may get the index digit from w_k on S_b ($k = 1, 2, \ldots, 7n$) and use it to extract the corresponding character (binary digit 7) in E_b. Following this, E_b is changed into E using

$$E = \text{Asc}^{-1}(e), \forall e \in E_b$$

subsequently E is converted into M with

$$M = f^{-1} ([f(E) \cdot f(K)] \mod 26) \quad (10)$$

That means we can now read the hidden message that was concealed inside the cover text.

Figure 4 depicts the scheme of the bit mapping technique applied to the ASCII letters, while Figures 2 and 3 display the steps of the embedding process and the extraction methodology, respectively.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Get the secret text (M) and encrypt the text (E).</td>
</tr>
<tr>
<td>2</td>
<td>Get the encrypted text (E) and convert to its binary code equivalent (E_b) and make 7 last bits;</td>
</tr>
<tr>
<td>3</td>
<td>Get the cover text (C) and convert to its binary code equivalent (C_b) and make 7 last bits;</td>
</tr>
<tr>
<td>4</td>
<td>Read sequential and repetitive bits (E_b) left to right;</td>
</tr>
<tr>
<td>5</td>
<td>Read the bits (C_b) sequentially per letter right to left and write in the embedded text (S);</td>
</tr>
<tr>
<td>6</td>
<td>If bit (E_b) = 0 finds in bit (C_b) = 0;</td>
</tr>
<tr>
<td>7</td>
<td>Else If bit (E_b) = 1 finds in bit (C_b) = 1;</td>
</tr>
<tr>
<td>8</td>
<td>Then write the sequence number in the stego key (W);</td>
</tr>
<tr>
<td>9</td>
<td>Iterate steps 4-8 till the last of bits (E_b);</td>
</tr>
<tr>
<td>10</td>
<td>Send stego text (S) and stego key (W) to receiver.</td>
</tr>
</tbody>
</table>

Figure 3 Pseudocode for embedding algorithm
C. Algorithm

Example

An OPT encryption algorithm was used to encrypt the ST text before it was turned into a bit stream and used further. The CT text, unlike the ST text, was instantly transformed into a digital format. After that, the stego text and key were embedded. This procedure yielded the following results:

- **Secret Text**

 VisiKementerianAgamaRepublikIndonesiaT
 erwujudnyaMasyarakatIndonesiaYangTaatB
 eragamaRukunCerdasDanSejahteraLahirBat
 inDalamRangkaMewujudkanIndonesiaYang
 BerdaulatMandiriDanBerkepribadianBerlan
 daskanGotongRoyong

- **OTP Key:**

 Njvfuihaurfjannfvueheqfjnvifhvaerjfrfurufgr
 ehfiaghufgjfnghpigjrezmnxbcvvhfgdfjdkslap
 nqiweguirueyrttgfhdfjdzmnmbcvvgfhdjs

The Stego key is in Figure 5, the cover text is in Figure 6, and the stego text is in Figure 7.

![Figure 4 Pseudocode for the extracting](image)

![Figure 5 proposed method processing](image)

![Figure 5 Cover-text](image)
4. Results and Discussion:

What follows is a sample of the study's findings and the discussion that follows their application of the bit mapping approach.

A. Experimental

In order to assess how much ST can be handled by CT and whether or not embedding it into plain text would modify the plain text itself, an experiment was carried out on an information medium that was based on plain text. After a stego key was created, ST could be reconstructed from the resulting stego text.

The testing made use of article texts sourced from a broad variety of online mass media sources, ecommerce websites (used in the product description part), major social media, and SMS. Table I displays the findings obtained from the experiment.

The average size of online news and ecommerce content was calculated by randomly sampling 100 articles from each area. Each of which had a unique assortment of ASCII characters and lengths of paragraphs.

Since the character counts (CT) of social media posts and SMS messages are capped by default, the latter is used to signify that certain procedures are still viable even on medium with character counts (CT) that are much lower, such as SMS.

B. Capacity

By calculating the capacity ratio and solving equation (11), which states that 1 bit of ST can be stored in 7 bits of CT, we can determine that 1 bit of ST can be stored in 7 bits of CT, we may determine that CT can store ST. There is a 14.2% embedding capacity.

\[
\text{Capacity ratio} = \frac{\text{bits of secret text}}{\text{bits of cover text}} \times 100\%
\]

C. Similarity measure

Using Jaro-Winkler Distance, where a score of 0 indicates no similarity and a score of 1 indicates exactly the same, the generated stego-text was compared to CT once the embedding process was complete. Using equation (2), we can see that the similarity between the two strings is 1, indicating that they are identical.

D. Discussion

Steganography's primary goal is to covertly transmit sensitive information through a chosen medium. The best methods of
concealment are those that are not immediately obvious. The best strategy is the one that results in a stego-file that is almost identical to its cover file. The stego-text created by this bit-mapping technique is identical to the CT. Using the ASCII character's binary value, an undetectable stego-text may be created that seems to be a standard string of letters but really contains a hidden message. This is a two-key technique for securing ST; the OTP key encrypts ST before it is implanted in CT, and the stego-key keeps it hidden after it is within CT. The symmetric encryption with a statistically random key makes this approach very secure. With a capacity ratio of 14.2% and a 7-bit CT's ability to contain 1 bit ST, the results are a greater embedding capacity. Since bit mapping can be used on any plain text, this text steganography technique could be used for a wide range of digital purposes, such as sending secret messages and keeping plain text information safe.

Due to the many limitations of character recognition, especially on non-printable characters such as Tab, CR and LF, the hidden ST in CT may also be defective and disappear when printing and scanning with OCR, but the hidden ST in CT will not be defective and disappear when copied and pasted on a wide variety of digital platforms, such as Microsoft Word, Google Docs and other similar applications.

Since the ST bit is used to insert each CT character, this technique may be used to prevent tampering with plain text by identifying when the CT character sequence has been altered by insertion, deletion, or substitution. This method makes plain text fragile, which makes sure that plain text is real and can be trusted.

5. Conclusions

This bit mapping technique efficiently converts secret-text (ST) into cover-text (CT) with a capacity ratio of 14.2% by converting characters into bit streams. So, ST bits may be masked by any letter in the ASCII alphabet. Jaro-Winkler Distance Measurement reveals that the bit mapping method's stego-text is qualitatively equivalent to CT [1].

Aside from the embedded ST, the stego-text is indistinguishable from the original CT. We relied on accessible writing throughout the Internet, from news stories and social media postings to e-commerce site descriptions, to conduct our analysis. We also relied on the unabridged version of the Decree of the Minister of Religious Affairs. The experiments showed that there isn't much difference between the two, and the bit mapping method works just as well with either one as a cover text. This research could lead to a deeper look at character encodings other than the standard ASCII.

References

https://doi.org/10.4018/jjisst.a.17.45.34

https://doi.org/10.4018/jjisst.a.17.45.34

https://doi.org/10.5013/ijssst.a.17.45.34

https://doi.org/10.1016/b978-0-12-819438-6.00014-1

https://doi.org/10.1016/b978-0-12-819438-6.00014-1

https://doi.org/10.5815/ijcnis.2014.01.05

[24] Naharuddin, A., Wirawa, A. D., & Sumpeno, S. (2018, August). A high capacity and imperfectible text steganography using binary digit mapping on ASCII characters. In 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) (pp. 668-675). IEEE.

[25] Bashir, H. M., Li, Q., & Hou, J. (2020, November). A high capacity text steganography utilizing unicode zero-width characters. In 2020 International Conferences on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) (pp. 668-675). IEEE.